Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM
详细信息   在线全文   PDF全文下载
  • journal_title:American Mineralogist
  • Contributor:Yoshihiro Nakamuta ; Shoichi Toh
  • Publisher:Mineralogical Society of America
  • Date:2013-04-01
  • Format:text/html
  • Language:en
  • Identifier:10.2138/am.2013.4341
  • journal_abbrev:American Mineralogist
  • issn:0003-004X
  • volume:98
  • issue:4
  • firstpage:574
  • section:Articles
摘要

This study reports on the structural relationship between graphite, lonsdaleite, and diamond extracted from the Goalpara ureilite and propose a model for the formation of lonsdaleite and diamond in these stony meteorites. The study is based on data from reflected-light microscopy and laser Raman spectroscopy of a polished thin section (PTS) of the Goalpara ureilite and X-ray powder diffraction (XRPD) analyses of the grains taken out of it. Selected-area electron diffraction (SAED) analyses and high-resolution TEM (HRTEM) observations were carried out in the three unique directions of pristine graphite with two thin slices prepared from a carbon grain directly taken out of a PTS. SAED patterns reveal the relative crystal-axes orientations between graphite (Gr), lonsdaleite (Lo), and diamond (Di) as (001)Gr//(100)Lo//(111)Di, [210]Gr//[001]Lo//[21̄1̄]Di, and (12̄0)Gr//(1̄20)Lo//(02̄2)Di. The shapes of diffraction spots in the SAED patterns reveal that the transformation of graphite to lonsdaleite and diamond is initiated by sliding of hexagonal carbon planes of graphite along the [210] of the graphite structure. These results suggest that lonsdaleite and diamond in ureilites formed directly from graphite through boat-type buckling and chair-type puckering of hexagonal carbon planes of graphite, respectively. The results of this study confirm the shock origin of diamond in ureilites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700