Iterative finite-difference solution analysis of a
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Evan Schankee Um ; Michael Commer ; Gregory A. Newman
  • Publisher:Society of Exploration Geophysicists
  • Date:2012-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2011-0220.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:77
  • issue:2
  • firstpage:T29
  • section:Seismic Modeling and Wave Propagation
摘要

We have investigated numerical characteristics of iterative solutions to the acoustic wave equation in the Laplace-Fourier (LF) domain. We transformed the time-domain acoustic wave equation into the LF domain; the transformed equation was discretized with finite differences and was solved with iterative methods. Finite-difference modeling experiments demonstrate that iterative methods require an infinitesimal stopping tolerance to accurately compute the pressure field especially at long offsets. To understand the requirement for such infinitesimal tolerance values, we analyzed the evolution of intermediate solution vectors, residual vectors, and search direction vectors during the iteration. The analysis showed that the requirement arises from the fact that in the solution space, the amplitude of the pressure field varies more than sixty orders of magnitude on the common log scale. Accordingly, we propose a rule of thumb for choosing a proper stopping tolerance value. We also examined numerical dispersion errors in terms of the grid sampling resolutions per skin depth and wavelength. We found that despite the similarity of the form of the acoustic wave and electromagnetic diffusion equations, the former is different from the latter due to the fact that in the LF domain, the skin depth of the acoustic wave equation is decoupled from its wavelength. This aspect requires that in the LF domain, its grid size be determined by considering the minimum grid sampling resolutions based not only the wavelength but also the skin depth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700