3D inversion of a scalar radio
详细信息   在线全文   PDF全文下载
摘要

A radio magnetotelluric (MT) field data set, acquired in scalar mode, over a buried waste site has been successfully analyzed using a 3D MT inversion scheme using nonlinear conjugate gradients. The results of this analysis demonstrate the utility of the scheme where more than 4800 data points collected on multiple measurement profiles have been inverted simultaneously. The resulting image clearly detects the buried waste; when receiver profiles cross pit boundaries, the image maps the lateral extent of the pit. However, the base of the pit is poorly resolved, and depends upon the starting model used to launch the inversion. Hence, critical information on whether contamination is leaching into a resistive gravel bed lining the base of the pit, as well as the deeper geological horizons consisting of brown coal, clay, and tertiary sands, is inconclusive. Nevertheless, by incorporating within the inversion process a priori information of the background media that is host to the waste, sharper images of the base of the pit are obtained, which are in good agreement with borehole data. The 3D analysis applied in this paper overcomes previous limitations in the radio magnetotelluric (RMT) method using 2D data analysis and inversion. With 3D analysis, it is unnecessary to make assumptions regarding geological strike, and near-surface statics can be accommodated in both source polarizations. Our findings also indicate that 2D MT interpretation can overestimate the pit's depth extent. This may lead to the erroneous conclusion that the geological horizons beneath the pit have been contaminated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700