用户名: 密码: 验证码:
Differential form and numerical implementation of Bi
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:José M. Carcione ; Boris Gurevich
  • Publisher:Society of Exploration Geophysicists
  • Date:2011-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2010-0169.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:76
  • issue:6
  • firstpage:N55
  • section:Poroelasticity
摘要

The squirt-flow wave attenuation mechanism is implemented in Biot’s theory of poroelasticity in the form of differential equations. All the stiffnesses involved in the stress-strain relation become complex and frequency dependent, which can exactly be expressed in terms of kernels based on the Zener mechanical model. In the time domain, this approach implies time convolutions, which are circumvented by introducing memory variables. The differential equations are consistent with Gassmann’s and Mavko-Jizba equations at low and high frequencies, respectively. All the coefficients in the poro-viscoelastic differential equations have a clear physical meaning and can be obtained or estimated from independent measurements. The key additional parameters are the dry-rock bulk modulus at a confining pressure where all the compliant pores are closed, i.e., a hypothetical rock without the soft porosity, the grain-contact aspect ratio and the compliant porosity. We recasted the wave equation in the particle-velocity/stress formulation and solved it by using a time-splitting technique and the Fourier pseudospectral method to compute the spatial derivatives. The algorithm can be used to obtain synthetic wave fields in inhomogeneous media.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700