Non-Newtonian rheological law f
详细信息   在线全文   PDF全文下载
摘要

Volcanic eruption models are hampered by the lack of multiphase magmatic flow laws. Most rheological models estimate the viscosity of multiphase lavas via the Einstein-Roscoe equation, but this simplification cannot be used for high crystallinity and it does not consider the non-Newtonian strain-rate dependence of viscosity. We carried out parallel plate experiments on natural samples to simulate multiphase lava deformation under various stresses and strain rates. Multiphase lavas exhibit an important component of shear thinning, and appear to invalidate the adequacy of Einstein-Roscoe–based formulations for highly crystalline lava rheology. The remarkable singular dependence of viscosity (η) on strain rate (γ) yields a novel universal rheology law at eruptive temperatures (T), i.e., log η = −0.993 + 8974/T −0.543·log γ Our work reveals the importance of considering microcracking and viscous dissipation at very high strain rate (>10−3 s−1), explaining the occurrence of seismic swarms along the conduit margins, and consequently supporting plug-like magma ascent models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700