Integrating interpretation expertise and objective data analysis in 3D interpretation
详细信息   在线全文   PDF全文下载
  • journal_title:The Leading Edge
  • Contributor:J. Henderson ; G. Paton ; B. Froner ; J. Lowell ; M. Ackers
  • Publisher:Society of Exploration Geophysicists
  • Date:2012-11-01
  • Format:text/html
  • Language:en
  • Identifier:10.1190/tle31111374.1
  • journal_abbrev:The Leading Edge
  • issn:1070-485X
  • volume:31
  • issue:11
  • firstpage:1374
  • section:Special section: IQ Earth
摘要

Volume attribute computation is an accepted part of mainstream interpretation workflows. Perhaps counter-intuitively, attribute generation is powerful because it creates data sets that show only a subset of the information available in the original seismic. By reducing the information content, it is easier to focus on those aspects of the seismic response that help differentiate particular aspects of the imaged geology. Seismic attributes often measure properties of the seismic signal and the trace-to-trace variation in seismic signal that have an opaque relationship to rock properties. Therefore, interpretation of such attributes is generally based on identification of geologically reasonable scenarios. This can be greatly facilitated by examining multiple attributes simultaneously in a spatially coregistered manner—to either increase the differentiation between features of interest or to the show the relationship between different types of seismic response. A powerful way to achieve this is the use of color-blending techniques (Henderson et al., 2007) (Figure 1). Color blending effectively illuminates the geology, but consequently creates a complex image in which the information is hard to access other than visually. Accurate extraction of the information perceived within a color blend is one of the interpretation challenges associated with the improvements in visualization technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700