Development of an Automated Ten
详细信息   在线全文   PDF全文下载
摘要

Tension infiltrometry is a useful in situ technique that is commonly used to determine hydraulic conductivity of the soil near saturation; however, the measurements are time consuming and costly. The aim of this study was to develop a fully automated tension infiltrometer for field use based on already existing designs. Differential pressure transducers were used to automate water level measurements, and the tension settings were automated by a set of solenoid valves. The effects of different design parameters on water level measurement fluctuations created by bubble disturbances (noise) were studied in the laboratory. The differential transducer provided less noisy measurements than the single transducer. The measurement noise was significantly smaller when a large-diameter reservoir was used. The measurement noise was further reduced by using a reservoir system made of two tubes of different diameters slotted into each other. The effect of an increasing flow rate on the water level fluctuations was also investigated. Based on the design parameters tested, three identical tension infiltrometers connected to a single Mariotte bottle were built and tested under laboratory and field conditions. The pressure-dependent hydraulic conductivity, K(h), values for all three replicates applied in the laboratory did not significantly differ from each other. In the field, the infiltration experiments were performed on a sandy loam soil on sites with and without wheel tracks. A significant reduction of K(h) values for most of the applied pressure heads was observed in the wheel track. The improved automated tension infiltrometer requires only a little operator intervention.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700