Submarine transitional flow deposits in the Paleogene Gulf of Mexico
详细信息   在线全文   PDF全文下载
  • journal_title:Geology
  • Contributor:Ian A. Kane ; Anna S.M. Pontén
  • Publisher:Geological Society of America
  • Date:2012-12-01
  • Format:text/html
  • Language:en
  • Identifier:10.1130/G33410.1
  • journal_abbrev:Geology
  • issn:0091-7613
  • volume:40
  • issue:12
  • firstpage:1119
  • section:Articles
摘要

Gravity-driven flows on the seafloor are the largest, yet least well understood, sediment transport agents on Earth. Recent exploration wells in ultradeep basins have revealed the presence of large sandy submarine fan systems of enigmatic facies types, many hundreds of kilometers from paleocoastlines. These sedimentary deposits often defy conventional turbidite or debrite interpretations, having a character suggestive of deposition from flows with transient turbulent-laminar rheologies. In the Wilcox Formation (Gulf of Mexico), inferred transitional flow deposits have distinctive stratigraphic stacking patterns, from fine-grained debrites to coarser grained turbidites. The vertical sequence of beds is here inferred to reflect the longitudinal bed distribution in response to lobe progradation, and demonstrates a transition from well-mixed turbulent flow, to progressively more rheologically stratified flow, and eventually to fully laminar flow. The progressive development of internal rheological boundaries resulted in a high-concentration but fluidal basal layer, and an upper quasi-laminar layer with an overriding sheared dilute turbidity current. The long runout of the flows is linked to their high silt and clay content; it is most likely flow expansion at the channel-lobe transition that drives flow transformation. This process-based model may be applicable to many deep-water settings and provides a framework within which to interpret the stratigraphic and spatial distribution of these complex deposits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700