Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen
详细信息   在线全文   PDF全文下载
  • journal_title:AAPG Bulletin
  • Contributor:Andrew L. Petter ; Ronald J. Steel
  • Publisher:American Association of Petroleum Geologists (AAPG)
  • Date:2006-10-01
  • Format:text/html
  • Language:en
  • Identifier:10.1306/04240605144
  • journal_abbrev:AAPG Bulletin
  • issn:0149-1423
  • volume:90
  • issue:10
  • firstpage:1451
  • section:GEOLOGIC NOTE
摘要

Identification of bypass at the shelf margin is critical to deep-water exploration. We examine the shelf margin of an early Eocene fourth-order sequence with an attached basin-floor fan in the Spitsbergen Central Basin. Turbidity currents were fed mainly by hyperpycnal flow emerging from shelf-edge deltas. The life span of any turbidity current was determined primarily by the sediment concentration of the flow and the duration of the river flood. High-density hyperpycnal flows created sand-filled slope-channel complexes 10–15 m (33–49 ft) thick and 100–200 m (328–656 ft) wide that served as conduits for bypass to the basin floor. Low-density hyperpycnal flows were unconfined and deposited heterolithic lobes on the slope. Shelf-margin accretion of about 1.5 km (0.9 mi) during the falling stage gave way abruptly to bypass in the early lowstand. Most of the basin-floor fan growth was achieved after shelf-edge incision and before relative sea level rise. Coastal-plain aggradation in the late lowstand sequestered sediment from the shelf-edge distributaries, effectively diminishing high-density hyperpycnal flow output. The late lowstand was therefore marked by a second phase of shelf-margin accretion with only limited bypass to the basin floor, and a heterolithic, prograding complex downlapped the early lowstand channels. Transgression ultimately led to the abandonment of the shelf-edge delta complex and the accumulation of mainly mudstone on the margin. The shelf-margin architecture exhibited by this sequence should serve as a type example of a deep-water feeder system in which hyperpycnal flow is the primary initiator of turbidity currents for sand accumulation on the slope and basin floor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700