Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ra
详细信息   在线全文   PDF全文下载
摘要

X-ray microprobes are among the most important new analytical techniques to emerge from third generation synchrotron facilities. Here we show how X-ray fluorescence, diffraction, and absorption can be used in parallel to determine the structural form of trace elements in heterogeneous matrices at the micrometer-scale of resolution. Scanning X-ray microfluorescence (μSXRF) and microdiffraction (μSXRD) first are used to identify the host solid phase by mapping the distributions of elements and solid species, respectively. Micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy is then used to determine the mechanism of trace element binding by the host phase at the molecular scale. To illustrate the complementary application of these three techniques, we studied how nickel is sequestered in soil ferromanganese nodules, an overwhelmingly complex natural matrix consisting of submicrometer to nanometer sized particles with varying structures and chemical compositions. We show that nickel substitutes for Mn3+ in the manganese layer of the MnO2-Al(OH)3 mixed-layer oxide lithiophorite. The affinity of Ni for lithiophorite was characteristic of micronodules sampled from soils across the U.S.A. and Europe. Since many natural and synthetic materials are heterogeneous at nanometer to micrometer scales, the synergistic use of μSXRF, μSXRD, and μEXAFS is expected to have broad applications to earth and materials science.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700