Optimal Nearly Analytic Discrete Appr
详细信息   在线全文   PDF全文下载
摘要

Recently, we proposed the so-called optimal nearly analytic discrete method (onadm) for computing synthetic seismograms in acoustic and elastic wave problems (Yang et al 2004). In this article, we explore the theoretical properties of the onadm including the stability criteria of the onadm for solving 1D and 2D scalar wave equations, numerical dispersion, theoretical error, and computational efficiency when using the onadm to model the acoustic wave fields. For comparison in the 1D case, we also discuss numerical dispersions and stability criteria of the so- called Lax–Wendroff schemes with accuracy of Ot4, Δx8) and Ot4, Δx10) and the pseudospectral method (psm). We then apply the onadm to the heterogeneous case in synthetic seismograms. Promising numerical results illustrate that the onadm provides a useful tool for large-scale heterogeneous practical problems because it can effectively suppress numerical dispersions caused by discretizing the wave equations when too-coarse grids are used. Numerical modeling also indicates that simultaneously using both the wave displacement and its gradients to approximate the high-order derivatives is important for decreasing the numerical dispersion and source-generated noise caused by the discretization of wave equations because wave- displacement gradients include important seismic information.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700