Fast modeling of borehole neutron porosity measurements with a new spatial transport-diffusion approximation
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Olabode Ijasan ; Carlos Torres-Verdín ; William E. Preeg
  • Publisher:Society of Exploration Geophysicists
  • Date:2013-05-01
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2012-0433.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:78
  • issue:3
  • firstpage:D151
  • section:Borehole Geophysics and Rock Properties
摘要

The quantitative integration of nuclear measurements into the in situ petrophysical and geophysical evaluation of rock formations has been elusive because of the lack of efficient algorithms to simulate them. We discovered a new method for rapid numerical simulation of borehole neutron measurements using Monte Carlo (MC)-derived spatial flux sensitivity functions (FSFs) and diffusion flux-difference (DFD) approximations. The method calculates spatial sensitivity flux perturbations using flux-difference approximations of one-group neutron diffusion models. By invoking appropriate boundary conditions, the one-group, time-independent neutron diffusion solution is implemented for nonmultiplying systems in 2D and 3D cylindrical coordinates. The solution is differentiated with respect to the neutron cross section to obtain an expression for flux-difference due to cross-section perturbations. Constant transport-correction coefficients for cross-section parameters are calculated with a flux-fitting method to account for deviations of borehole neutron measurements from the physics of diffusion. Thereafter, spatial FSF responses are rapidly and accurately calculated using a first-order Rytov DFD approximation. Estimated flux-differences are next used to calculate lumped higher order perturbation terms. The DFD technique is tested and benchmarked against MC calculations in the presence of standoff, invasion, and well deviation for wireline and logging-while-drilling tools. Benchmark examples and application in highly deviated wells indicate that neutron porosity logs can be accurately and efficiently simulated with the new DFD method, even in complex geometrical and physical conditions, with errors lower than 1.2 porosity units.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700