Recognition and Hydrologic Significance of Passive-Margin Updip
详细信息   在线全文   PDF全文下载
  • journal_title:Journal of Sedimentary Research
  • Contributor:James W. Castle ; Russell B. Miller
  • Publisher:SEPM Society for Sedimentary Geology
  • Date:2000-
  • Format:text/html
  • Language:en
  • Identifier:10.1306/032300701290
  • journal_abbrev:Journal of Sedimentary Research
  • issn:1527-1404
  • volume:70
  • issue:6
  • firstpage:1290
  • section:Research Articles
摘要

Sequence-stratigraphic interpretations are extended to a passive-margin updip setting using sedimentological observations from cores and well-to-well correlations in Eocene coastal-plain strata of South Carolina. In the succession studied, formation contacts tend to follow sequence boundaries even as lithologies vary within individual sequences. Sequence boundaries at the base of the Congaree Formation and near the top of the Tinker Formation formed during relative sea-level fall associated with second-order global cycles. These boundaries can be recognized clearly in both downdip and updip areas of the passive margin. Three other sequence boundaries, which occur at the base and top of the Warley Hill Formation and within the Tinker Formation, are interpreted as formed during relative sea-level fall associated with third-order global cycles.

Hydrostratigraphic units in the strata studied conform to depositional patterns that were controlled by changes in sea level and sediment influx. Sand of the Gordon aquifer comprises a thick aggradational succession deposited predominantly in the nearshore-shelf environment as accommodation increased during relative rise in sea level. Because of high rates of sedimentation in the proximal setting, aggradational stacking of nearshore sands may be common to other updip marine strata in accommodation-dominated regimes. The overlying Gordon confining unit consists of marine-shelf clay and carbonate sediment deposited in response to maximum transgression. During subsequent relative sea-level fall, accumulation of shoreface deposits produced a progradational succession that is represented by the lower part of the Upper Three Runs aquifer. Unlike formation contacts, boundaries between the clastic aquifers and confining units do not follow the third-order sequence boundaries because of lithologic variations within the sequences.

An increasing degree of breaching through the Gordon confining unit, which results in downward contaminant migration into the Gordon aquifer, occurs in the updip direction because of nearly continuous sand deposition. Near the base of the interval studied, contaminants migrate locally through the Crouch Branch confining unit because of erosional breaches formed by scour during sea-level lowstand. In this example and in other strata deposited in an updip passive-margin setting, the extent to which confining units are breached at sequence boundaries decreases in the downdip direction, resulting in better protection of the adjacent aquifer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700