Taphonomy and ecology of modern avifa
详细信息   在线全文   PDF全文下载
  • journal_title:Paleobiology
  • Contributor:Anna K. Behrensmeyer ; C. Tristan Stayton ; Ralph E. Chapman
  • Publisher:Paleontological Society
  • Date:2003-
  • Format:text/html
  • Language:en
  • Identifier:10.1666/0094-8373(2003)029<0052:TAEOMA>2.0.CO;2
  • journal_abbrev:Paleobiology
  • issn:0094-8373
  • volume:29
  • issue:1
  • firstpage:52
  • section:Articles
摘要

Avian skeletal remains occur in many fossil assemblages, and in spite of small sample sizes and incomplete preservation, they may be a source of valuable paleoecological information. In this paper, we examine the taphonomy of a modern avian bone assemblage and test the relationship between ecological data based on avifaunal skeletal remains and known ecological attributes of a living bird community. A total of 54 modern skeletal occurrences and a sample of 126 identifiable bones from Amboseli Park, Kenya, were analyzed for weathering features and skeletal part preservation in order to characterize preservation features and taphonomic biases. Avian remains, with the exception of ostrich, decay more rapidly than adult mammal bones and rarely reach advanced stages of weathering. Breakage and the percentage of anterior limb elements serve as indicators of taphonomic overprinting that may affect paleoecological signals. Using ecomorphic categories including body weight, diet, and habitat, we compared species in the bone assemblage with the living Amboseli avifauna. The documented bone sample is biased toward large body size, representation of open grassland habitats, and grazing or scavenging diets. In spite of this, multidimensional scaling analysis shows that the small faunal sample (16 out of 364 species) in the pre-fossil bone assemblage accurately represents general features of avian ecospace in Amboseli. This provides a measure of the potential fidelity of paleoecological reconstructions based on small samples of avian remains. In the Cenozoic, the utility of avian fossils is enhanced because bird ecomorphology is relatively well known and conservative through time, allowing back-extrapolations of habitat preferences, diet, etc. based on modern taxa.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700