The role of C-O-H and oxygen fugacity
详细信息   在线全文   PDF全文下载
  • journal_title:European Journal of Mineralogy
  • Contributor:Nadia Malaspina ; Simone Tumiati
  • Publisher:E. Schweizerbart'sche Verlagsbuchhandlung Science Publishers
  • Date:2012-
  • Format:text/html
  • Language:en
  • Identifier:10.1127/0935-1221/2012/0024-2213
  • journal_abbrev:Eur J Mineral
  • issn:0935-1221
  • volume:24
  • issue:4
  • firstpage:607
  • section:Articles
摘要

C-O-H fluids are released by dehydration, partial melting and/or decarbonation of the slab and transferred to the mantle, where they interact with the surrounding rocks, prompting the growth of carbonates, hydrous minerals and C polymorphs. In the pure C-O-H system, C-saturated fluid speciation is a function of the oxygen chemical potential. Therefore, in natural systems, the fluid speciation can be imposed by the redox state of the rock-forming phases. Alternatively, C-O-H fluids may control the bulk oxidation state of the rock system by redox reactions with the mineral phases. We selected three case studies of garnet-bearing ultramafic rocks (Ulten zone, Italy; Sulu, China; Bardane, Norway), which record metasomatic processes driven by C-O-H fluids at the interface between a subducting slab and the overlying mantle wedge. All these rocks contain carbonates (dolomite-only at P < 1.9 GPa at 900 °C, magnesite-only at P > 2.4 GPa at 900 °C, dolomite + magnesite in between) and hydrous phases (amphibole, phlogopite) equilibrated at some stages in the garnet stability field. The fO2 values, estimated by analysing the Fe3+ content (skiagite mole fraction) in garnet, indicate that the Ulten and Sulu peridotites record high oxygen fugacities (FMQ to FMQ+2) and a retrograde path with decreasing P and T. The fO2 values obtained for the Bardane garnet websterites, which record a prograde path with increasing T and P, are up to −2 log units lower than the FMQ. When combined with data for subduction-zone systems (arc lavas and their mantle sources), the studied ultramafic rocks define a trend of decreasing fO2 with increasing pressure.

The Bardane websterites contain C-polymorphs in polyphase inclusions, which precipitated from entrapped metasomatic fluids at ultrahigh pressures. The calculated C-O-H fluid phase in equilibrium with the solid phases consists of mixtures of H2O and CO2. Semi-quantitative estimates for the Ulten and Sulu peridotites, in which C-polymorphs have not been found, and petrographic constraints for the Ulten peridotites indicate that the C-O-H component of the fluid could consist of H2O+CO2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700