Finite difference
详细信息      
  • journal_title:Geophysics
  • Contributor:Sophie-Adelaide Magnier ; Peter Mora ; Albert Tarantola
  • Publisher:Society of Exploration Geophysicists
  • Date:1994-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.1443700
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:59
  • issue:9
  • firstpage:1435
  • section:Articles
摘要

Conventional approximations to space derivatives by finite differences use orthogonal grids. To compute second-order space derivatives in a given direction, two points are used. Thus, 2N points are required in a space of dimension N; however, a centered finite-difference approximation to a second-order derivative may be obtained using only three points in 2-D (the vertices of a triangle), four points in 3-D (the vertices of a tetrahedron), and in general, N + 1 points in a space of dimension N. A grid using N + 1 points to compute derivatives is called minimal. The use of minimal grids does not introduce any complication in programming and suppresses some artifacts of the nonminimal grids. For instance, the well-known decoupling between different subgrids for isotropic elastic media does not happen when using minimal grids because all the components of a given tensor (e.g., displacement or stress) are known at the same points. Some numerical tests in 2-D show that the propagation of waves is as accurate as when performed with conventional grids. Although this method may have less intrinsic anisotropies than the conventional method, no attempt has yet been made to obtain a quantitative estimation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700