Solution of 3D time-domain electromagnetic
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:M. Zaslavsky ; V. Druskin ; L. Knizhnerman
  • Publisher:Society of Exploration Geophysicists
  • Date:2011-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2011-0088.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:76
  • issue:6
  • firstpage:F339
  • section:Electrical and Electromagnetic Methods
摘要

Time-domain problems for controlled-source electromagnetic exploration require accurate discretization of the solution for multiple spacial and temporal scales. Therefore, forward simulation using conventional computational methods becomes computationally expensive, even without accounting for induced-polarization (IP) effects. These effects create another complication caused by the presence of a convolution integral in the time-domain Maxwell system. We suggested a novel, fast, and robust algorithm to solve the 3D time-domain electromagnetic (EM) problems that can be considered as a generalization of the spectral Lanczos decomposition method. The new method also allowed us to incorporate the IP effects without significant cost increase. The discretized large-scale Maxwell system was projected onto a small subspace consisting of the Laplace-domain solutions (the so-called parameter-dependent Krylov subspace) for an optimally chosen set of Laplace parameters. The projected system preserved stability and passivity of the original problem. Moreover, our approach (even without the IP effects) yielded an optimal solution within a wide class of computational algorithms that included the conventional time-domain finite-difference, discrete Fourier transform and spectral Lanczos decomposition methods. Numerical examples for the controlled-source EM problem showed that the new algorithm produces accurate solutions on time intervals spanning from milliseconds to hundreds of seconds with the cost of (at most) 60 time steps of the implicit finite-difference time domain scheme. This showed significant improvement even compared with results for nonpolarized media reported in recent literature. Additionally, the new algorithm had the unique capability to accurately handle large-scale 3D models, including the IP effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700