An efficient finite-difference scheme for electroma
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Sofia Davydycheva ; Vladimir Druskin ; Tarek Habashy
  • Publisher:Society of Exploration Geophysicists
  • Date:2003-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.1620626
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:68
  • issue:5
  • firstpage:1525
  • section:ELECTRICAL AND ELECTROMAGNETIC METHODS
摘要

We consider a problem of computing the electromagnetic field in 3D anisotropic media for electromagnetic logging. The proposed finite-difference scheme for Maxwell equations has the following new features based on some recent and not so recent developments in numerical analysis: coercivity (i.e., the complete discrete analogy of all continuous equations in every grid cell, even for nondiagonal conductivity tensors), a special conductivity averaging that does not require the grid to be small compared to layering or fractures, and a spectrally optimal grid refinement minimizing the error at the receiver locations and optimizing the approximation of the boundary conditions at infinity. All of these features significantly reduce the grid size and accelerate the computation of electromagnetic logs in 3D geometries without sacrificing accuracy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700