Rotation of the principal stress directions due to e
详细信息      PDF全文下载
摘要

Earthquake faulting results in stress drop over the rupture area. Because the stress drop is only in the shear stress and there is no or little stress drop in the normal stress on the fault, the principal stress directions must rotate to adapt such a change of the state of stress. Using two constraints, i.e., the normal stress on the fault and the vertical stress (the overburden pressure), which do not change before and after the earthquake, we derive simple expressions for the rotation angle in the σ1 axis. For a dip-slip earthquake, the rotation angle is only a function of the stress-drop ratio (defined as the ratio of the stress drop to the initial shear stress) and the angle between the σ1 axis and the fault plane, but for a strike-slip earthquake the rotation angle is also a function of the stress ratio. Depending on the faulting regimes, the σ1 axis can either rotate toward the direction of fault normal or rotate away from the direction of fault normal. The rotation of the stress field has several important seismological implications. It may play a significant role in the generation of heterogeneous stresses and in the occurrence and distribution of aftershocks. The rotation angle can be used to estimate the stress-drop ratio, which has been a long-lasting topic of debate in seismology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700