Interpretive advantages of 90°-phase w
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Hongliu Zeng ; Milo M. Backus
  • Publisher:Society of Exploration Geophysicists
  • Date:2005-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.1925741
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:70
  • issue:3
  • firstpage:C17
  • section:AMPLITUDE VARIATION WITH OFFSET (AVO) AND INTERPRETATION
摘要

We examine field seismic data to test the benefits of 90°-phase wavelets in thin-bed interpretation that are predicted by seismic modeling in part 1 of this paper. In an interbedded sandstone-shale Miocene succession in the Gulf of Mexico basin, a 90°-phase shift of nearly zero-phase seismic data significantly improves lithologic and stratigraphic interpretation. A match between seismic and acoustic impedance (AI) profiles results in a better tie between seismic amplitude traces and lithology-indicative logs. Better geometric imaging of AI units that does not use dual-polarity seismic events results in easier and more accurate reservoir delineation. Less amplitude distortion and the stratigraphy-independent nature of thin-bed interference significantly improves stratigraphic resolution and seismic stratigraphic profiling. For a Ricker-like wavelet having small side lobes, stratigraphic resolution of 90°-phase data is considerably higher than that of zero-phase data. In this specific case, stratigraphic resolution of 90°-phase data is λ/4 (λFormulawavelength), compared with λ/2 for its zero-phase counterpart. Stratal slices made from 90°-phase data show geomorphologic patterns of depositional systems with less noise and fewer interference fingerprints. A Permian Basin field provides a real-world example of porous zones in thin, high-frequency carbonate sequences that are better visualized with 90°-phase seismic data than with zero-phase data.Formula

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700