Estimation of free gas saturation from seismic reflection surveys
详细信息   在线全文   PDF全文下载
摘要

Many previously proposed methods of estimating free gas saturation from seismic survey data rely on calibration to invasively collected, in situ measurements. Typically, such in situ measurements are used to parameterize or calibrate rock-physics models, which can then be applied to seismic data to achieve saturation estimates. We tested a technique for achieving estimates of the spatial distribution of gas saturation solely from shipboard seismic surveys. We estimated the quality factor from seismic reflection surveys using the spectral ratio method, and then inverted a mesoscopic-scale P-wave attenuation model to find the parameters that matched the modeled attenuation to our estimates of observed attenuation within the range of seismic frequencies. By using a genetic algorithm for this inversion, we not only searched efficiently for a global solution to the nonlinear set of equations that compose the model, but also constrain the search to a relatively broad set of realistic parameter values. Thus, our estimates do not rely on in situ measurements of these parameters, but on distributions of their possible values, many of which may be referenced from literature. We first tested this method at Blake Ridge, offshore North and South Carolina, where an approximately 400-m-deep gas-saturated zone underlies a field of methane hydrates. The extensive field work and subsequent studies at this site make it ideal for validating our method. We also demonstrated the applicability of our method to shallower deposits by presenting results from Finneidfjord, Norway, where the inversion of the P-wave attenuation model recognizes very small gas saturations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700