Initial studies on the effects of radiation, thermal ageing and aqueous environments on the stability and structure of candidate polymeric encapsulant materials
详细信息   在线全文   PDF全文下载
  • journal_title:Mineralogical Magazine
  • Contributor:J. Dawson ; V. Smith ; J. Clifford ; S. J. Williams
  • Publisher:Mineralogical Society of Great Britain and Ireland
  • Date:2012-12-01
  • Format:text/html
  • Language:en
  • Identifier:10.1180/minmag.2012.076.8.14
  • journal_abbrev:Mineralogical Magazine
  • issn:0026-461X
  • volume:76
  • issue:8
  • firstpage:2985
  • section:Waste forms, containment materials and criticality
摘要

The current route in the UK for the conditioning and immobilization of most intermediate level waste for interim storage and geological disposal is to encapsulate in a cementitious matrix. However, certain waste materials, such as those containing reactive metals (e.g. uranium and aluminium), can corrode in the presence of the highly alkaline water in a cementitious environment. In their initial, undegraded form, polymeric materials can provide the appropriate, unreactive environment needed for the encapsulation of chemically active metals.

This study examines the effects of gamma radiation on the stability of six candidate polymeric encapsulants, including a vinyl ester styrene resin (VES) and five epoxy resin formulations. The polymeric encapsulants were exposed to radiation doses up to 10 MGy using AMEC's cobalt-60 gamma irradiation facility and their radiation and chemical stability characterized by the use of a number of analytical techniques. These included flexural and compressive testing, Fourier transform infrared spectroscopy (FTIR), gel fraction, leach testing and gas evolution. The results show that the most stable resin in terms of radiation resistance and chemical stability was VES. Most of the epoxy resin materials also showed good generic stability, but the FTIR analysis showed the potential for dose-rate effects in one formulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700