Structural and metamorphic evolution of the Ambin massif (western Alps)
详细信息   在线全文   PDF全文下载
摘要

The basement domes of the central part of western Alps may result either from a multistage tectonic evolution with a dominant horizontal shortening component, an extensional behaviour, or both. The Ambin massif belongs to the “Briançonnais” domain and is located within the HP metamorphic zone. It was chosen for a reappraisal of the tectonic evolution of the Internal Alps in its western segment. Structural investigations have shown that Alpine HP rocks were exhumed in three successive stages. The D1 stage was roughly coeval with the observed peak metamorphic conditions and corresponds to a non-coaxial regime with dominant horizontal shortening and north movement direction. Petrological observations and P-T estimates show that the exhumation process was initiated during D1, the corresponding mechanism being still poorly understood. The D2 stage took place under low-blueschist facies conditions and culminated under greenschist facies conditions. It developed a retrogressive foliation and pervasive shear-zones at all scales that locally define major tectonic contacts. D2 shear zones show a top-to-east movement direction and correspond actually to large-scale detachment faults responsible for the juxtaposition of less metamorphic units above the Ambin basement and thus to a large part of the exhumation of HP rocks toward the surface. D2 shear zones were subsequently deformed by D3 open folds, large antiforms (e.g. the Ambin dome) and associated brittle-ductile D3 shear-bands. The D1 to D3 P-T conditions and P-T path of the blueschists occurring in the deepest part of the Ambin dome, was estimated by using the multi-equilibrium thermobarometric method of the Tweeq and Thermocalc softwares. Peak pressure conditions, estimated at about 14–16 Kb, 500oC, are followed by a nearly-isothermal decompression that occurred concurrently with the major D1–D2 change in the ductile deformation regime. Eastwards, the Schistes Lustrés units exhibit a similar geometry on top of the Gran Paradiso dome but exhibit opposite D2 movement direction. Lower-grade units are lying above higher-grade units, the shear zones occurring in between being similar to Ambin’s D2 detachments. Thus at regional scale, the D2 detachments seem to form together with the Ambin shear-zones, a network of conjugate detachments. Such a pattern suggests that the exhumation history is mostly controlled by a D2+D3 crustal-scale vertical shortening resulting in the thinning of the previous tectonic pile formed during D1. The slab-break off hypothesis may explain such an extensional behaviour within the western Pennine domain. It is suggested that the thermo-mechanical rebound of the residual European slab initiated between 35 and 32 Ma the fast exhumation of the previously thickened orogenic wedge (stack of D1 HP slices). It was immediately followed by a collapse of the wedge that may correspond to the E-W Oligocene extensional event responsible for the opening of rifts in the West European platform.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700