The stability of methane hydrate intercalates of montmorillonite and n
详细信息   在线全文   PDF全文下载
  • journal_title:American Mineralogist
  • Contributor:A.F. Koster van Groos ; Stephen Guggenheim
  • Publisher:Mineralogical Society of America
  • Date:2009-
  • Format:text/html
  • Language:en
  • Identifier:10.2138/am.2009.3018
  • journal_abbrev:American Mineralogist
  • issn:0003-004X
  • volume:94
  • issue:2-3
  • firstpage:372
  • section:Articles
摘要

Sodium-rich montmorillonite, Na-exchanged montmorillonite, and Na-exchanged nontronite form intercalate complexes with methane hydrate, identified by a characteristic d(001) value of ~2.2 nm. The upper stability of both Na-rich montmorillonite–methane-hydrate complexes is nearly identical to that of methane hydrate, whereas that of Na-exchanged nontronite–methane-hydrate complex is ~1 °C lower. The low-temperature stability of these complexes is controlled by dehydration reactions of the montmorillonite and nontronite. At temperatures of 2 °C, the d(001) value of the montmorillonite complex decreases step-wise with decreasing temperature from ~2.2 nm at 2 °C to 1.6 nm at ≤ − 5 °C, indicating that H2O is progressively expelled from the interlayer. All methane is probably expelled at ~0 °C. The d(001) value of the nontronite complex did not show a similar step-wise reduction and, consequently, the lower stability of this complex is not well established. We conclude that under conditions of reduced salinity, smectite may sufficiently swell and intercalate with methane hydrate in an intermediate to deep-ocean floor environment. Consequently, these smectite–methane-hydrate complexes in the sub-ocean-floor surface may store substantial quantities of carbon.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700