Bonding and structural change
详细信息   在线全文   PDF全文下载
摘要

Understanding the physical and chemical properties of carbonate minerals at extreme conditions is important for modeling the deep carbon cycle, because they represent likely hosts for carbon in the lower mantle. Previous high-pressure studies have identified a structural and electronic phase transition in siderite using X-ray diffraction and X-ray emission spectroscopy. The Fe end-member of the carbonate group, siderite (FeCO3), exhibits unique high-pressure behavior that we investigated using a combination of in situ Raman spectroscopy, synchrotron X-ray diffraction, and theoretical methods. In this Raman spectroscopy study, we observed the appearance of a new CO3 symmetric stretching mode at 20 cm−1 lower frequency beginning at approximately 46 GPa. This softening is due to the lengthening of the C-O bonds as a result of a combination of rotation and volume shrinkage of the FeO6 octahedra while siderite undergoes the isostructural volume collapse and electronic spin transition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700