Compression and shear-wave velocities in discrete particle simulatio
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Carlos Santos ; Vanessa Urdaneta ; Xavier García ; Ernesto Medina
  • Publisher:Society of Exploration Geophysicists
  • Date:2011-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2010-0376.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:76
  • issue:5
  • firstpage:E165
  • section:Borehole Geophysics and Rock Properties
摘要

The Hertz-Mindlin (HM) contact model has been a cornerstone for the development of several effective medium theories (EMTs) aimed at describing the mesoscopic and macroscopic mechanical behavior of granular materials like unconsolidated sands. In addition, this model is at the core of most of the discrete particle method designs used to numerically solve for the responses of these heterogeneous materials to external perturbations, like acoustic and stress-strain experiments. However, this model has shown shortcomings in the description of the shear response characterization of granular materials, partly due to the non-affine motions experienced by the grains. We have developed a correction of the model based on a detailed calibration of our acoustic numerical results with previous empirical data. Using a microscopic approach to the grain-grain contact surfaces, the nature of the corrections found appear to be related to the shear resistant asperities and the smaller scale of the grain-grain contact areas compared to the total area assumed by the HM model. An improved HM model characterized by a tangential stiffness weakening is based on these surface corrections. Using this observation an enhanced EMT theory emerges based not only on the tangential stiffness modification but also on the velocity-pressure dependence obtained during the calibration of our numerical model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700