Observations of heterogeneous pore pressure distributions in clay-rich materials
详细信息   在线全文   PDF全文下载
摘要

The concept of effective stress is one of the basic tenets of rock mechanics where the stress acting on a rock can be viewed as the total stress minus the pore water pressure. In many materials, including clay-rich rocks, this relationship has been seen to be imperfect and a coefficient (χ) is added to account for the mechanical properties of the clay matrix. Recent experimental results during the flow testing (both gas and water) of several rocks (Callovo-Oxfordian claystone, Opalinus Clay, Boom Clay) and geomaterials (bentonite, kaolinite) has given evidence for stable high pressure differentials. The design of the experiments allows multiple measurements of pore pressure, which commonly shows a complex distribution for several different experimental geometries. The observed stable high pressure differentials and heterogeneous pore pressure distribution makes the describing of stress states in terms of effective stress complex. Highly localized pore pressures can be sustained by argillaceous materials and concepts of evenly distributed pore pressures throughout the sample (i.e. conventional effective stress) do not fit many clay-rich rocks if the complexities observed on the micro-scale are not incorporated, especially when considering the case of gas flow.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700