A mantle-derived dolomite silicocarbona
详细信息   ag.geoscienceworld.org/content/76/2/357.full">在线全文   ag.geoscienceworld.org/content/76/2/357.full.pdf">PDF全文下载
  • journal_title:Mineralogical Magazine
  • Contributor:A. E. Brady ; K. R. Moore
  • Publisher:Mineralogical Society of Great Britain and Ireland
  • Date:2012-
  • Format:text/html
  • Language:en
  • Identifier:10.1180/minmag.2012.076.2.06
  • journal_abbrev:Mineralogical Magazine
  • issn:0026-461X
  • volume:76
  • issue:2
  • firstpage:357
  • section:Articles
摘要

The magma source and evolution of a zoned breccia pipe on the southern Beara Peninsula in southwest Ireland are investigated using the geochemistry of the host mineral assemblages. The clast-poor inner zone of the pipe has a magnesium-rich silicocarbonatite whole-rock composition (14.30 wt.% MgO; 31.80 wt.% SiO2). The silicocarbonatite has retained an ultimate mantle source 13C isotopic composition after metamorphism, consistent with the presence of mantle debris. The silicocarbonatite is Cr-, Ni- and Co-rich (847 ppm, 611 ppm and 60 ppm, respectively) but REE depleted compared with volcanic dolomite carbonatites worldwide. The mineral assemblage consists of Sr-rich (0.55 wt.% SrO) ferroan dolomite, magnesite and pseudomorphs of chlorite after phlogopite, consistent with derivation from a carbonated and hydrated mantle. However, chrome spinel crystals (≤40.14 wt.% Cr2O3) are compositionally indistinguishable from unmetasomatized spinel macrocrysts in kimberlites. The silicocarbonatite is inferred to represent a magma produced by partial melting of metasomatized mantle at physical conditions between those in which primary dolomite carbonatite and ultramafic magmas of high-pressure origin form. The primary silicocarbonatite magma ascended and sampled mantle material in a manner similar to kimberlite, and subsequently lost volatile components due to release of metasomatic fluids and later metamorphism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700