Mineralogical investigations of the first package of the alternative buffer material test – I. Alteration of bentonites
详细信息   在线全文   PDF全文下载
  • journal_title:Clay Minerals
  • Contributor:S. Kaufhold ; R. Dohrmann ; T. Sandén ; P. Sellin ; D. Svensson
  • Publisher:Mineralogical Society of Great Britain and Ireland
  • Date:2013-05-01
  • Format:text/html
  • Language:en
  • Identifier:10.1180/claymin.2013.048.2.04
  • journal_abbrev:Clay Minerals
  • issn:0009-8558
  • volume:48
  • issue:2
  • firstpage:199
  • section:Alteration and migration studies in underground rock laboratories (URLs) and natural analogues
摘要

Bentonite, which is envisaged as a promising engineered barrier material for the safe disposal of highly radioactive waste, was and is investigated in different large scale tests. The main focus was and is on the stability (or durability) of the bentonite. However, most countries concentrated on one or a few different bentonites only, regardless of the fact that bentonite performance in different applications is highly variable. Therefore, SKB (Svensk Kärnbränslehantering) set up the first large scale test which aimed at a direct comparison of different bentonites. This test was termed the ‘alternative buffer material test’ and considers eleven different clays which were either compacted (blocks) or put into cages to keep the material together. One so-called package consisted of thirty different blocks placed on top of each other. These blocks surrounded a heated iron tube 10 cm in diameter. Altogether three packages were installed in the underground test laboratory Äspö, Sweden. The first package was terminated 28 months after installation and the bentonite had been exposed for the maximum temperature (130°C) for about one year.

Almost all geochemical and mineralogical alterations of the different bentonites (apart from exchangeable cations) were restricted to the contact between iron and bentonite. The increase of the Fe2O3 content was attributed to corrosion of the tube. However, the typical 7 or 14 Å smectite alteration product was not found. At the contact of one sample, siderite was precipitated. Some samples showed anhydrite and organic carbon accumulation and some showed dissolution of clinoptilolite and cristobalite. IR spectroscopy, XRD, and XRF data indicated the formation of trioctahedral minerals/domains in the case of some bentonites. Even more data has to be collected before unambiguous conclusions concerning both alteration mechanisms and bentonite differences can be drawn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700