A theoretical overview of model-based a
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Gerard T. Schuster ; Min Zhou
  • Publisher:Society of Exploration Geophysicists
  • Date:2006-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.2208967
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:71
  • issue:4
  • firstpage:SI103
  • section:REDATUMING: DETERMINISTIC WAVEFIELDS
摘要

We review the equations for correlation-based redatuming methods. A correlation-based redatuming method uses natural-phase information in the data to time shift the weighted traces so they appear to be generated by sources (or recorded by geophones) shifted to a new location. This compares to model-based redatuming, which effectively time shifts the traces using traveltimes computed from a prior velocity model. For wavefield redatuming, the daylight imaging, interferometric imaging, reverse-time acoustics (RTA), and virtual-source methods all require weighted correlation of the traces with one another, followed by summation over all sources (and sometimes receivers). These methods differ from one another by their choice of weights. The least-squares interferometry and virtual-source imaging methods are potentially the most powerful because they account for the limited source and receiver aperture of the recording geometry. Interferometry, on the other hand, has the flexibility to select imaging conditions that target almost any type of event. Stationary-phase principles lead to a Fermat-based redatuming method known as redatuming by a seminatural Green's function. No crosscorrelation is needed, so it is less expensive than the other methods. Finally, Fermat's principle can be used to redatum traveltimes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700