Low and Mid-Level Shape Priors For Image Segmentation.
详细信息   
  • 作者:Levinshtein ; Alex.
  • 学历:Doctor
  • 年:2010
  • 毕业院校:University of Toronto
  • ISBN:9780494721995
  • CBH:NR72199
  • Country:Canada
  • 语种:English
  • FileSize:66991745
  • Pages:170
文摘
Perceptual grouping is essential to manage the complexity of real world scenes. We explore bottom-up grouping at three different levels. Starting from low-level grouping, we propose a novel method for oversegmenting an image into compact superpixels, reducing the complexity of many high-level tasks. Unlike most low-level segmentation techniques, our geometric flow formulation enables us to impose additional compactness constraints, resulting in a fast method with minimal undersegmentation. Our subsequent work utilizes compact superpixels to detect two important mid-level shape regularities, closure and symmetry. Unlike the majority of closure detection approaches, we transform the closure detection problem into one of finding a subset of superpixels whose collective boundary has strong edge support in the image. Building on superpixels, we define a closure cost which is a ratio of a novel learned boundary gap measure to area, and show how it can be globally minimized to recover a small set of promising shape hypotheses. In our final contribution, motivated by the success of shape skeletons, we recover and group symmetric parts without assuming prior figure-ground segmentation. Further exploiting superpixel compactness, superpixels are this time used as an approximation to deformable maximal discs that comprise a medial axis. A learned measure of affinity between neighboring superpixels and between symmetric parts enables the purely bottom-up recovery of a skeleton-like structure, facilitating indexing and generic object recognition in complex real images.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700