Towards understanding the self-assembly of complicated particles via computation.
详细信息   
  • 作者:Jankowski ; Eric.
  • 学历:Doctor
  • 年:2012
  • 毕业院校:University of Michigan
  • ISBN:9781267464484
  • CBH:3519623
  • Country:USA
  • 语种:English
  • FileSize:6839738
  • Pages:171
文摘
We develop advanced Monte Carlo sampling schemes and new methods of calculating thermodynamic partition functions that are used to study the self-assembly of complicated "patchy " particles. Patchy particles are characterized by their strong anisotropic interactions,which can cause critical slowing down in Monte Carlo simulations of their self-assembly. We prove that detailed balance is maintained for our implementation of Monte Carlo cluster moves that ameliorate critical slowing down and use these simulations to predict the structures self-assembled by patchy tetrominoes. We compare structures predicted from our simulations with those generated by an alternative learning-augmented Monte Carlo approach and show that the learning-augmented approach fails to sample thermodynamic ensembles. We prove one way to maintain detailed balance when parallelizing Monte Carlo using the checkerboard domain decomposition scheme by enumerating the state-to-state transitions for a simple model with general applicability. Our implementation of checkerboard Monte Carlo on graphics processing units enables accelerated sampling of thermodynamic properties and we use it to confirm the fluid-hexatic transition observed at high packing fractions of hard disks. We develop a new method,bottom-up building block assembly,which generates partition functions hierarchically. Bottom-up building block assembly provides a means to answer the question of which structures are favored at a given temperature and allows accelerated prediction of potential energy minimizing structures,which are difficult to determine with Monte Carlo methods. We show how the sequences of clusters generated by bottom-up building block assembly can be used to inform "assembly pathway engineering",the design of patchy particles whose assembly propensity is optimized for a target structure. The utility of bottom-up building block assembly is demonstrated for systems of CdTe/CdS tetrahedra,DNA-tethered nanospheres,colloidal analogues of patchy tetrominoes and shape-shifting particles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700