Laser intensity-based obstacle detection and tracking.
详细信息   
  • 作者:Hancock ; John Arthur.
  • 学历:Doctor
  • 年:1999
  • 导师:Thorpe, Charles E.
  • 毕业院校:Carnegie Mellon University
  • 专业:Computer Science.;Engineering, Electronics and Electrical.;Engineering, Automotive.;Transportation.
  • ISBN:0599379987
  • CBH:9936886
  • Country:USA
  • 语种:English
  • FileSize:6662246
  • Pages:184
文摘
One of the major challenges in designing intelligent vehicles capable of autonomous travel on highways is reliable obstacle detection. Highways present an unknown and dynamic environment with real-time constraints. In addition, the high speeds of travel force a system to detect objects at long ranges. Because of its necessity for mobile robot platforms and intelligent vehicles, there has been a great amount of research devoted to the obstacle detection problem. Although there are a number of methods that can successfully detect moving vehicles, the more difficult problem of detecting animals or small, static road debris such as tires, boxes, or crates remains unsolved.;Laser range scanners, or ladars, have been used for many years for obstacle detection. Laser scanners operate by sweeping a laser across a scene and at each angle, measuring the range and returned intensity. Past researchers have ignored the intensity signal while focusing on the range returned from the laser, since the range provides direct 3-D information useful for mapping. In this thesis, I demonstrate how laser intensity alone can be used to detect and track obstacles.;Laser intensity provides different information from ordinary video data since lighting and viewing directions are coincident. At long ranges and grazing angles, vertical obstacles reflect significantly more laser energy than the horizontal road. The obstacle detection system uses a high-performance laser scanner which provides fast single-line laser scans. Histogram analysis on the returned intensity signal is used to select obstacle candidates. After candidates are matched and merged with candidates from previous scans, the range to each obstacle is estimated by a novel intensity and position tracking method.;To help better understand laser reflectance characteristics, I present a new laser reflectance model which provides good results for a wide variety of object surfaces. The reflectance model is based on experimental results and a combination of two popular reflectance theories from the computer graphics and computer vision literature. I also discuss road and system geometry in detail, since geometry affects the obstacle detection problem significantly.
      

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700