Metamodeling-based fast optimization of nanoscale AMS-SoCs.
详细信息   
  • 作者:Garitselov ; Oleg.
  • 学历:Doctor
  • 年:2012
  • 导师:Mohanty, Saraju P.,eadvisorKougianos, Elias,eadvisor
  • 毕业院校:University of North Texas
  • ISBN:9781267781345
  • CBH:3533621
  • Country:USA
  • 语种:English
  • FileSize:4701382
  • Pages:107
文摘
Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip AMS-SoCs). The integration of analog and digital circuits on the same die makes the system cost effective. In AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. The time allocated for the circuit design and optimization creates a need to reduce the simulation time. The time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. In order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their accuracy and application to AMS-SoCs. Several different optimization algorithms are compared for global optimization accuracy and convergence. Three different AMS circuits, ring oscillator, inductor-capacitor voltage-controlled oscillator LC-VCO) and phase locked loop PLL) that are present in many AMS-SoC are used in this study for design flow application. Metamodels created in this dissertation provide accuracy with an error of less than 2% from the physical layout simulations. After optimal sampling investigation, metamodel functions and optimization algorithms are ranked in terms of speed and accuracy. Experimental results show that the proposed design flow provides roughly 5,000x speedup over conventional design flows. Thus, this dissertation greatly advances the state-of-the-art in mixed-signal design and will assist towards making consumer electronics cheaper and affordable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700