Effect of annealing on photoluminescence and optical properties of porous anodic alumina films formed in sulfuric acid for solar energy applications
详细信息查看全文 | 推荐本文 |
摘要
Photoluminescence and optical properties of porous oxide films formed by two-step aluminum anodization at a fixed current 200 mA have been investigated. It was found that the crystallographic structure depend strongly on the annealing temperature. X-ray diffraction (XRD) reveals an amorphisation of the porous oxide films after annealing. This evolution has been confirmed by Raman spectroscopy measurement. Spectroscopic ellipsometry (SE) in the UV-vis and near infra red (IR) spectra shows that refraction index n increases and the extinction coefficient k decreases with annealing temperature. This observation has been confirmed with reflectivity measurements. As a consequence the reflectivity reaches 97%when porous alumina films were annealed at 650 掳C. Photoluminescence (PL) measurements show two PL peaks in the emission and excitation spectra. The first emission peak is centered at 460 nm (伪-band) and the second (尾-band) shifts from 500 to 525 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is located at 271 nm and the second shifts to longer wavelengths with increasing emission wavelength. The results indicate the existence of two PL centers. One is associated with oxygen adsorption at the pore wall and oxygen vacancies inside the alumina. The other is related to the adsorption of water and/or OH groups at the surface of the pore wall and to structure defects and sulfur inclusion inside the films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700