New approaches to nonparametric density estimation and selection of smoothing parameters
详细信息查看全文 | 推荐本文 |
摘要
The application of Singular Spectrum Analysis (SSA) to the empirical distribution function sampled at a grid of points spanning the range of the sample leads to a novel and promising method for the computer-intensive nonparametric estimation of both the distribution function and the density function. SSA yields a data-adaptive filter, whose length is a parameter that controls the smoothness of the filtered series. A data-adaptive algorithm for the automatic selection of a general smoothing parameter is introduced, which controls the number of modes of the estimated density. Extensive computer simulations demonstrate that the new automatic bandwidth selector improves on other popular methods for various densities of interest. A general uniform error bound is proved for the proposed SSA estimate of the distribution function, which ensures its uniform consistency. The simulation results indicate that the SSA density estimate with the automatic choice of the filter length outperforms the kernel density estimate in terms of the mean integrated squared error and the Kolmogorov-Smirnov distance for various density shapes. Two applications to problems arising in photovoltaic quality control and economic market research are studied to illustrate the benefits of SSA estimation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700