Classification methodologies of multilayer perceptrons with sigmoid activation functions
详细信息查看全文 | 推荐本文 |
摘要
This paper studies the classification mechanisms of multilayer perceptrons (MLPs) with sigmoid activation functions (SAFs). The viewpoint is presented that in the input space the hyperplanes determined by the hidden basis functions with values 0's do not play the role of decision boundaries, and such hyperplanes do not certainly go through the marginal regions between different classes. For solving an n-class problem, a single-hidden-layer perceptron with at least log2(n-1)greater-or-equal, slanted2 hidden nodes is needed. The final number of hidden neurons is still related to the sample distribution shapes and regions, but not to the number of samples and input dimensions. As a result, an empirical formula for optimally selecting the initial number of hidden nodes is proposed. The ranks of response matrixes of hidden layers should be taken as a main basis for pruning or growing the existing hidden neurons. A structure-fixed perceptron ought to learn more than one round from different starting weight points for one classification task, and only the group of weights and biases that has the best generalization performance should be reserved. Finally, three examples are given to verify the above viewpoints.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700