Optimal control modification for robust adaptive control with large adaptive gain
详细信息查看全文 | 推荐本文 |
摘要
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain so as to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness. A new adaptive law, called optimal control modification, is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations. The modification is based on a minimization of the norm of the tracking error bounded away from some lower bound, formulated as an optimal control problem. The optimality condition is used to derive the modification based on the Pontryagin鈥檚 Minimum Principle. The optimal control modification is shown to improve robustness of the standard MRAC without significantly compromising the tracking performance. Flight control simulations demonstrate the effectiveness of the new adaptive law. A series of recent, successful flight tests of this adaptive law on a NASA F/A-18A aircraft at NASA Dryden Flight Research Center further demonstrate the effectiveness of the optimal control modification adaptive law.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700