Modeling bacteriophage attachment using adsorption efficiency
详细信息查看全文 | 推荐本文 |
摘要
Typically, models of bacteriophage adsorption consider the process in two steps: reversible and irreversible attachment. In this study, a recently introduced one-step adsorption model, the adsorption efficiency model, is used to describe the adsorption of T-series bacteriophages to Escherichia coli. The adsorption efficiency model simplifies phage attachment to a single step: irreversible binding. The adsorption efficiency () is used to account for unadsorbed phages. The model accurately describes T-series phage adsorption (T2, T4, T5, T6, and T7) under a variety of conditions. In addition, the model is compared to a commonly used two-step adsorption model, the sequential model. Experimental data support the assumptions of the adsorption efficiency model and suggest that the reversible first step of T-series phage adsorption is equivalent to irreversible attachment under the conditions tested. The adsorption efficiency model was not appropriate for a phage 位 strain lacking side tail fibers. However, the model did agree with data previously published for a strain of phage 位 possessing side tail fibers, as is the case of all T-series strains tested. This suggests that the adsorption efficiency model applies to phages containing side tail fibers

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700