A simulation study of the removal efficiency of granular activated carbon on cadmium and lead
详细信息查看全文 | 推荐本文 |
摘要
The excessive release of heavy metals into the environment is a major concern worldwide. Adsorption process is among the most effective techniques for heavy metals removal from waste streams and activated carbon has been widely used as an adsorbent. Therefore, this study was carried out to examine the potential and effectiveness of granular activated carbon (GAC) to remove heavy metals, particularly cadmium (Cd) and lead (Pb) through adsorption from the prepared solutions respectively. A fixed bed column test was conducted to simulate the actual condition of adsorption in a continuous manner in a filtration process. Different flow rates were used to evaluate their effects on the column performance where different breakthrough curves were obtained. The Adam-Bohart breakthrough curve equation was used to predict the breakthrough curve and to obtain the adsorption capacity of cadmium and lead on GAC. The results showed that the Adam-Bohart equation fitted the experimental data well and cadmium and lead can be successfully removed by granular activated carbon (GAC) through the column test.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700