A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction
详细信息查看全文 | 推荐本文 |
摘要
This paper proposes a novel hybrid algorithm for automatic selection of the proper input variables, the number of hidden nodes of the radial basis function (RBF) network, and optimizing network parameters (weights, centers and widths) simultaneously. In the proposed algorithm, the inputs and the number of hidden nodes of the RBF network are represented by binary-coded strings and evolved by a genetic algorithm (GA). Simultaneously, for each chromosome with fixed inputs and number of hidden nodes, the corresponding parameters of the network are real-coded and optimized by a gradient-based fast-converging parameter estimation method. Performance of the presented hybrid approach is evaluated by several benchmark time series modeling and prediction problems. Experimental results show that the proposed approach produces parsimonious RBF networks, and obtains better modeling accuracy than some other algorithms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700