Brain ferritin iron may influence age- and gender-related risks of neurodegeneration
详细信息查看全文 | 推荐本文 |
摘要
>Background

Brain iron promotes oxidative damage and protein oligomerization that result in highly prevalent age-related proteinopathies such as Alzheimer's disease (AD), Parkinson's disease (PD), and Dementia with Lewy Bodies (DLB). Men are more likely to develop such diseases at earlier ages than women but brain iron levels increase with age in both genders. We hypothesized that brain iron may influence both the age- and gender-related risks of developing these diseases.

Methods

The amount of iron in ferritin molecules (ferritin iron) was measured in vivo with MRI by utilizing the field dependent relaxation rate increase (FDRI) method. Ferritin iron was measured in four subcortical nuclei [caudate (C), putamen (P), globus pallidus (G), thalamus (T)], three white matter regions [frontal lobe (Fwm), genu and splenium of the corpus callosum (Gwm, Swm)] and hippocampus (Hipp) in 165 healthy adults aged 19–82.

Results

There was a high correlation (r > 0.99) between published post-mortem brain iron levels and FDRI. There were significant age-related changes in ferritin iron (increases in Hipp, C, P, G, and decreases in Fwm). Women had significantly lower ferritin iron than men in five regions (C, T, Fwm, Gwm, Swm).

Conclusions

This is the first demonstration of gender differences in brain ferritin iron levels. It is possible that brain iron accumulation is a risk factor that can be modified. MRI provides the opportunity to assess brain iron levels in vivo and may be useful in targeting individuals or groups for preventive therapeutic interventions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700