Comprehensive Evaluation of Bladder and Urethral Dysfunction Symptoms: Development and Psychometric Validation of the Urinary Symptom Profile (USP) Questionnaire
详细信息查看全文 | 推荐本文 |
摘要
The coefficients of performance (COP) φ0 and φ for a single thermoelectric (TE) element welded with two metal plates were calculated as functions of temperature difference (ΔT) and thermoelectric figure of merit (ZT) from the conventional thermal rate equations and the new thermal rate ones proposed here, respectively. We made an attempt to take the differences in the Seebeck coefficient g src="http://www.sciencedirect.com/scidirimg/entities/204e.gif" alt="greek small letter alpha" title="greek small letter alpha" border="0">, electrical resistivity ρ and thermal conductivity κ of TE materials at the hot and cold sides of a TE element into the thermal rate equations on the assumption that their TE properties change linearly with temperature. However, the difference in κ was neglected even in the new thermal rate equations because its temperature dependence was too small when φ was applied to the high-performance Bi–Te alloys. The normalized temperature dependences at 300 K of g src="http://www.sciencedirect.com/scidirimg/entities/204e.gif" alt="greek small letter alpha" title="greek small letter alpha" border="0"> and ρ were denoted by A and B, respectively. The term of A in the thermal rate equations was canceled out by the Thomson coefficient, but that of B remained. When B > 0 K−1, φ/φ0 is enhanced more significantly with an increase of B at larger ΔT and lower ZT, and it reached about 1.20 at ΔT = 80 K for Bi–Te alloys with B ≈ 5 × 10−3 K−1. It was thus found that the COP of a cooling module is also affected strongly by B as well as ZT.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700