Fault tolerance analysis of mesh networks with uniform versus nonuniform node failure probability
详细信息查看全文 | 推荐本文 |
摘要
Mesh networks have been applied to build large scale multicomputer systems and Network-on-Chips (NoCs). Mesh networks perform poorly in tolerating faults in the view of worst-case analysis, so it is practically important for multicomputer systems and NoCs manufactures to determine the lower bound for the mesh network connectivity probability when the node failure probability and the network size are given. In this paper, we study the topic based on k-submesh model under two fault models: Each node has uniform or nonuniform failure probability. We develop a novel technique to formally derive lower bound on the connectivity probability for mesh networks. Our study shows that mesh networks of practical size can tolerate a large number of faulty nodes and maintain higher connectivity probability, thus are reliable and trustworthy enough for multicomputer systems and NoCs. For example, suppose we are building a mesh network of 40鈥?00 nodes (e.g., ) and require a network connectivity probability , we only need to bound the uniform node failure probability by . On the other hand, for the same size network , the mesh network connectivity probability can maintain even the network runs one million seconds uninterruptedly under exponential distribution node failure probability with failure rate level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700