Electrochemical characterisation of patterned carbon nanotube electrodes on silane modified silicon
详细信息查看全文 | 推荐本文 |
摘要
Previously we have used atomic force anodisation lithography, with a self-assembled monolayer of hexadecyltrichlorosilane as a resist, to pattern silicon oxide nanostructures onto a p-type silicon (1 0 0) substrate. A condensation reaction was used to immobilise carbon nanotubes with high carboxylic acid functionality directly to the silicon oxide. A further condensation reaction using this surface attached the molecule ferrocenemethanol to the bound nanotubes. These new nanostructures were used as electrodes to observe the oxidation and reduction of ferrocene. However, because the small currents measured are near the detection limits of the electrochemical system used, important electrode kinetics could not to be obtained. A scribing approach made larger regions of oxidised silicon leading to the creation of larger scale patterned arrangements of carbon nanotubes allowing measurement of important electrochemical parameters such as electrode kinetics, electron transfer rates and surface concentration of redox molecules. Knowledge of these characteristics has provided insights into the behaviour of the microelectrodes created using atomic force microscopy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700