Development of a composite vascular scaffolding system that withstands physiological vascular conditions
详细信息查看全文 | 推荐本文 |
摘要
Numerous scaffolds that possess ideal characteristics for vascular grafts have been fabricated for clinical use. However, many of these scaffolds may not show consistent properties when they are exposed to physiologic vascular environments that include high pressure and flow, and they may eventually fail due to unexpected rapid degradation and low resistance to shear stress. There is a demand to develop a more durable scaffold that could withstand these conditions until vascular tissue matures in vivo. In this study, vascular scaffolds composed of poly(var epsilon-caprolactone) (PCL) and collagen were fabricated by electrospinning. Morphological, biomechanical, and biological properties of these composite scaffolds were examined. The PCL/collagen composite scaffolds, with fiber diameters of approximately 520 nm, possessed appropriate tensile strength (4.0 ± 0.4 MPa) and adequate elasticity (2.7 ± 1.2 MPa). The burst pressure of the composite scaffolds was 4912 ± 155 mmHg, which is much greater than that of the PCL-only scaffolds (914 ± 130 mmHg) and native vessels. The composite scaffolds seeded with bovine endothelial cells (bECs) and smooth muscle cells (bSMCs) showed the formation of a confluent layer of bECs on the lumen and bSMCs on the outer surface of the scaffold. The PCL/collagen composite scaffolds are biocompatible, possess biomechanical properties that resist high degrees of pressurized flow over long term, and provide a favorable environment that supports the growth of vascular cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700