A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells
详细信息查看全文 | 推荐本文 |
摘要
Adult hippocampal neurogenesis plays an important role in brain function and neurological diseases. Adult neural progenitor cell (aNPC) proliferation is a critical first step in hippocampal neurogenesis. However, the mechanisms that modulate aNPC proliferation have not been fully identified. Ample evidence has demonstrated that cell proliferation is dependent on the intracellular Ca2+ concentration. We hypothesized that store-operated Ca2+ channels (SOCs), which are ubiquitously expressed in all cell types, participate in aNPC proliferation. We found that store-operated Ca2+ entry (SOCE) was involved in the proliferation of aNPCs and that 2-APB, Gd3+ and SKF96365, antagonists of SOCE and canonical transient receptor potential (TRPC), respectively, inhibited the increase in SOCE and aNPC proliferation. We therefore analyzed the expression of TRPCs in aNPCs and showed that TRPC1 is the most significantly upregulated member under proliferative conditions. Interestingly, knockdown of TRPC1 and using an antibody against TRPC1 markedly reduced the degree of SOCE and aNPC proliferation. In parallel, we observed the suppression of aNPC proliferation was found to be associated with cell cycle arrest in G0/G1 phase. Furthermore, gene expression microarray analysis revealed a selective up- or downregulation of 10 genes in aNPCs following TRPC1 silencing. Knockdown of Orai1 or STIM1 also induced a significant inhibition of SOCE and proliferation in aNPCs, and all three proteins were colocalized in the plasma membrane region of cells. Together, these results indicate that SOCE represents a principal mechanism regulating the proliferation of aNPCs and that TRPC1 is an essential component of this pathway. This discovery may be important in improving adult hippocampal neurogenesis and treating cognitive deficits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700