Synthesis, characterization of core-shell carbon-coated CaSnO3 nanotubes and their performance as anode of lithium ion battery
详细信息查看全文 | 推荐本文 |
摘要
In this paper, we design a strategy to obtain core-shell carbon-coated CaSnO3 nanotubes (hereafter C-CTO NTs) directly via a facile subsequent solvothermal synthesis using CaSn(OH)6 nanotubes as precursor in a mixed ethanol and water solvent. The mixed solvent not only facilitates the phase transformation of CaSnO3 from CaSn(OH)6 to take place quickly, but also retains the tube-shaped morphology. The uniform decoration of C shell on the surface of CaSnO3 nanotubes (hereafter CTO NTs) was confirmed by EELS (electron energy loss spectroscopy). Moreover we found that the uniform carbon-coating layer on the surface of CTO NTs played roles of a good conductor and a structure buffer to alleviate the strains from the volume variation of CTO NTs cores. So the core-shell structure possesses both the electroactivity of C and the advantages of nanotube structure. When used as an anode for Li ion battery, it shows enhanced cycling performance in term of cycling stability over bare CTO NT electrode and CaSnO3 nanocube (hereafter CTO NC) electrode. To our best knowledge, this is the first attempt to use C-CTO NTs as an anode in Li ion battery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700