Numerical design of ammonia bubble absorber applying binary nanofluids and surfactants
详细信息查看全文 | 推荐本文 |
摘要
The objectives of this paper are to analyze the combined heat and mass transfer characteristics for the ammonia bubble absorption process and to study the effects of binary nanofluids and surfactants on the absorber size. The ammonia bubble absorbers applying binary nanofluids and surfactants are designed and parametric analyses are performed. In order to express the effects of binary nanofluids and/or surfactants on the absorption performance, the effective absorption ratios for each case are applied in the numerical model. The values of the effective absorption ratio are decided from the previous experimental correlations. The kinds and the concentrations of nano-particles and surfactants are considered as the key parameters. The considered surfactants are 2-ethyl-1-hexanol (2E1H), n-octanol, and 2-octanol and nano-particles are copper (Cu), copper oxide (CuO), and alumina (Al2O3). The results show that the application of binary nanofluids and surfactants can reduce the size of absorber significantly. In order to reach 16.5%ammonia solution under the considered conditions, for example, the addition of surfactants (2E1H, 700 ppm) can reduce the size of absorber up to 63.0%, while the application of binary nanofluids (Cu, 1000 ppm) can reduce it up to 54.4%. In addition, it is found that the effect of mass transfer resistance is more dominant than that of heat transfer resistance. That is, the enhancement of mass transfer performance is more effective than that of heat transfer performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700