Multilayer film assembled from charged derivatives of chitosan: Physical characteristics and biological responses
详细信息查看全文 | 推荐本文 |
摘要
Polyelectrolyte multilayer films were successfully assembled from each of the three charged derivatives of chitosan; N-[(2-hydroxyl-3-trimethylammonium)propyl]chitosan chloride (HTACC), N-succinyl chitosan (SCC) and N-sulfofurfuryl chitosan (SFC), paired with one of the two oppositely charged polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on surface-treated poly(ethylene terephthalate) (treated PET) substrates by alternate layer-by-layer adsorption. Surface coverage and wettability of the multilayer films were determined by AFM and water contact angle measurements, respectively. Analysis by quartz crystal balance with dissipation (QCM-D) has suggested that all multilayer films are relatively rigid and have a high water content associated within their structures, accounting for up to 85-90%(w/w) for films having 7-10 layers. In vitro cytocompatibility tests for the fibroblast-like L929 cell line revealed a slight dependency for cell adhesion and proliferation on the outermost layer. The multilayer film containing HTACC exhibited moderate antibacterial activity against E. coli and S. aureus. Bearing negative charges, the multilayer films terminating with SFC and having at least 10 layers were capable of suppressing the adsorption of plasma proteins and platelet adhesion at a comparable level to the multilayer film assembled from heparin, a well-known antithrombogenic polymer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700